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One of the classical problems of additive number theory, known as Waring’s
problem, is to show that the k" powers form a basis for the integers. That
is, for any k there is some s = s(k) such that every positive integer is a sum
of s k' powers. Lagrange’s theorem, which says that every positive integer
is a sum of four squares, is a special case of this. Waring’s problem was first
solved by Hilbert, and then a few years later Hardy and Littlewood supplied
a new proof, using what is now known as their circle method.

I shall describe how to use a new variation of the circle method to show a
Waring-type result: that the bracket quadratics n|n+/2| form an asymptotic
basis for the integers. That is, there is some s so that every sufficiently large
positive integer is a sum of s numbers of the form n|ny/2]. The proof uses
recent work of Green and Tao on the quantitative distribution of polynomial
orbits on nilmanifolds. This is joint work with Ben Green.



